Inspired by the significance of hydrogen–solid interaction in hydrogen energy and catalysis, adsorption, diffusion, and desorption behaviors of deuterium atoms in rutile TiO2(011) have been investigated by temperature-programmed desorption (TPD) and ultraviolet photoelectron spectroscopy (UPS). Upon exposure, a small portion of D atoms adsorb at surface oxygen sites, resulting in the band gap states at 1.35 eV below the Fermi level and desorbing as water at ∼400 K. Most of the D atoms will diffuse into the bulk due to the relatively low activation barrier and the huge capacity of the solid material. These bulk D species desorb as D2/HD between 500 and 800 K. While the desorbing D2O from surface hydroxyls saturates at ∼0.10 monolayer (ML), the yielding D2 is about 96 ML (equivalent coverage) at the largest atomic D exposure of 4.54 langmuir and no saturation trend has been observed in the present work. Detailed analysis indicates the bulk D will diffuse back to the surface and recombine as D2 at elevated temperatures. The differences between the behavior of H(D) in rutile TiO2(110) and TiO2(011) have been discussed by considering the presence of additional bridging oxygen atoms between the in-plane and topmost ones on the latter surface. The striking finding that most surface D atoms diffuse into the bulk of rutile TiO2(011) will not only broaden our understanding of the interaction of H/D with the prototypical metal oxide material but also provide clues to investigate the mechanism of H/D involving reactions over TiO2 catalysts, for example, hydrogen evolution and hydrogenation.