In this study, accelerated life tests with ultra fine-pitch flip-chips with solder bumps down to 30 microns diameter have been performed. Tests commonly used like temperature cycling, high temperature storage, and humidity bias tests are not sufficient for such small packaging feature sizes any more. As solder bump sizes continue to decrease, along with the shrinkage of the solder pads and the scaling of line/space geometries, thermal diffusion has even more impact on reliability and lifetime of the solder connections, and current densities within single solder bumps increase. Therefore, electromigration of flip-chip interconnects is a significant reliability concern, especially when it comes to further miniaturization for high reliability applications. Since electromigration is a function of interconnect sizes and metallurgies, new interconnect developments need to be characterized for electromigration reliability. Flip-chips 10 mm × 10 mm × 0.8 mm in size with a die layout providing a pitch of 100 μm for solder bump sizes of 60 μm, 50 μm, 40 μm, or 30 μm diameter, respectively, have been used [1]. The SnAgCu alloy solder spheres were placed on a NiAu UBM realized in an electroless nickel process [2]. A daisy chain connection is integrated for each of the solder sphere sizes and each chip can separately be connected for online measurements during electromigration or reliability testing. A variety of current density and temperature combinations which is individually adapted to the respective solder sphere diameter has been used. Lifetime data were collected using online measurement through the daisy chains. Cross sectioning has been employed to analyze the influence of thermal diffusion as well as electromigration on the failure mechanism of the highly miniaturized solder joints. A prediction model for flip-chip interconnects with solder spheres down to 30 μm diameter will be outlined using Black’s equation.
Read full abstract