The coefficient of performance (COP) is a crucial metric for evaluating the efficiency of heat pump systems. Real-time monitoring of heat pump system performance necessitates continuously collecting and processing data from various components utilizing multiple sensors and controllers. This process is inherently complex and presents significant challenges. In recent years, artificial intelligence (AI) models have increasingly been applied in refrigeration, heat pump, and air conditioning systems due to their capability to identify and analyze complex patterns and data relationships, demonstrating higher accuracy and reduced computation time. In this study, multilayer perceptron (MLP), support vector machines (SVM), and random forest (RF) are used to develop COP prediction models for solar-assisted heat pumps. By comparing the predictive accuracy and modeling time of the three models built, the results demonstrate that the random forest model achieves the best prediction performance, with a mean absolute error (MAE) of 2.42% and a root mean squared error (RMSE) of 4.01% on the train set. On the test set, the MAE was 2.35% and the RMSE was 3.84%. The modeling time for the RF model was 6.57 s.
Read full abstract