Abstract
AbstractThe energy efficiency enhancement of solar dryers has attracted the attention of researchers worldwide because of the need for energy storage in solar drying applications, which arises primarily from the irregular nature of solar energy that leads to improper drying which will reduce the quality of the products being dried. This work comprehensively reviews the state-of-the-art research carried out on solar dryers for energy efficiency enhancement using various alternative strategies, including hybrid solar dryers that use auxiliary heating sources, such as electric heaters or biomass heaters, solar-assisted heat pump dryer, use of desiccant materials, and heat storage systems that use both sensible and latent heat storage. The advent of phase change materials (PCM), such as thermally and chemically stable PCMs, for long-term storage, bio-degradable and bio-compatible PCM materials to alleviate the negative environmental impact of conventional PCMs is also presented. The performance parameters considered for evaluating dryers include the maximum temperature attained inside the drying chamber, drying time and efficiency, specific moisture extraction rate (SMER), energy and exergy efficiency and CO2 mitigation effect. The factors considered to analyze the PCMs application in solar dryers include cost and sustainability of PCMs, and both energy and exergy analyses of dryers using PCMs. The gaps in current knowledge and future scope for further improvement of solar dryers are also elucidated. Graphical abstract
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.