Salinity and nutrient-depleted soil are major constraints to crop production, especially for vegetable crops. The effects of salinity and nutrient deficiency on spinach (Spinacia oleracea L.) were evaluated in sand cultures under greenhouse conditions. Plants were watered every day with Hoagland nutrition solution, deprived of nitrogen (N), phosphorous (P), or potassium (K) for nutrient deficiency, either with or without 20/10 mm sodium chloride (NaCl)/calcium chloride (CaCl2) for salinity treatment. Salinity significantly decreased shoot fresh weight (FW) and dry weight (DW), leaf relative water content (RWC), and specific leaf area (SLA) relative to controls after 4 weeks of treatment and increased chlorophyll content, maximum photochemical efficiency (Fv/Fm), and photochemical yield [Y(II)]. Nitrogen deficiency greatly reduced shoot FW and DW, SLA, and chlorophyll content, regardless of salt treatment. Y(II) and Fv/Fm were reduced by N deficiency and salinity treatment. Phosphorous and K deficiencies, similarly, decreased shoot FW and DW irrespective of salinity treatment and increased chlorophyll content without salt stress. Phosphorous deficiency increased Y(II) under control and Fv/Fm under both control and salt treatment. Salinity and nutrient deficiency also affected the nutritional value of spinach. Salt stress increased carotenoid and flavonoid contents, and reducing power in full-strength Hoagland solution, and decreased leaf ferrous ion chelating ability (FICA). Nutrient deficiency increased reducing power regardless of salinity treatment. Nitrogen deficiency increased anthocyanin and total phenolic contents, decreased carotenoids and flavonoids regardless of salinity treatment, and increased antioxidant capacity under no-salt conditions. Phosphorous deficiency increased carotenoid and flavonoid contents under no-salt condition and enhanced total phenolic content and reduced FICA and amino acid content under salt stress. Potassium deficiency increased total phenolic, carotenoid, and flavonoid contents and antioxidant capacity under non-salt condition, but decreased FICA regardless of salinity treatment. These results suggest that spinach nutritional value could be improved with only moderately or slightly reduced yield through cultural practices that impose either low fertilizer levels or slight salt stress.
Read full abstract