To determine whether different aspects lead to a heterogeneous distribution of soil fungi, we investigated artificially established alpine grasslands in the Muli mining area in the Qinghai-Tibet Plateau. Employing high-throughput sequencing techniques, we analyzed the composition, diversity, and function of soil fungal communities across various aspects (flat, East-facing, South-facing, West-facing, North-facing). We also examined their relationships with environmental factors. Soil fungal communities of restored alpine grasslands differed significantly across aspects in terms of the dominant phyla, classes and species level. Compared with No aspect, the Shannon index of fungi respectively decreased by 2.99%, 19.32%, 19.37% and 10.56% for East aspect, South aspect, West aspect and North aspect, respectively, and the Chao1 index of fungi respectively decreased by-2.44%, 35.50%, 42.15% and 3.21%, respectively. A total of 22 different types of fungi were identified in the study area. Predictive analysis, based on PICRUSt2, indicated that the primary functions of the fungal communities across different aspects were aerobic respiration I (cytochrome c) and aerobic respiration II (cytochrome c). Among the environmental variables, total phosphorus (P) and total nitrogen (N) were the principal factors influencing the fungal community composition.In conclusion, aspect plays a significant role in shaping the composition of fungal communities and also affects their overall diversity.