Measurement of water vapor (WV) in the lower troposphere on a continuous temporal basis would improve our knowledge of the atmospheric dynamics and the performance of numerical weather prediction models. In recent studies, a new measurement concept, the normalized differential spectral attenuation (NDSA) approach, was proposed. It is based on measurements of differential attenuation at 18.8 and 19.2 GHz performed along a tropospheric radio link. While NDSA measurement at a fixed elevation angle provides information on integrated WV (IWV), measurements at different elevation angles allow to retrieve the vertical WV content profile. A prototype NDSA demonstrator, which consists of two units, a synthesized transmitter and a software-defined radio receiver, has been designed and implemented. The system was accurately characterized through several laboratory tests, and then a first experimental campaign was conducted at fixed elevation angle along a ground-to-ground radio link. Obtained results confirm the sensitivity of the NDSA measurements to the IWV along such link with a good agreement with the existing ground-based and satellite data products.