Pectin lyase (PNL) and the bacteriocin carotovoricin (CTV) were induced in Erwinia carotovora subsp. carotovora 71 by the DNA-damaging agents mitomycin C, nalidixic acid, and UV light. To determine whether the recA product was involved in the expression of these damage-inducible phenotypes, we cloned the E. carotovora subsp. carotovora recA+ gene, inactivated it by Tn5 insertion, and constructed an E. carotovora subsp. carotovora recA::Tn5 strain by gene replacement via homologous recombination. The RecA- strain was more sensitive to methyl methanesulfonate, nitroquinoline oxide, and UV light than its RecA+ parent. The recA mutation did not affect the production of pectate lyase, polygalacturonase, cellulase, and protease or the ability to cause soft rot of potato tubers. With this mutant, unlike with the RecA+ parent strain, PNL and CTV were not induced by mitomycin C or detected in potato tuber tissue. The RecA+ phenotype, including the inducibility of PNL and CTV, could, however, be restored in the mutant in trans by the recA+ gene from either E. carotovora subsp. carotovora or Escherichia coli. We conclude that, in E. carotovora subsp. carotovora, the recA product is required in the induction of PNL and CTV.