In modern conditions, clay raw materials of fine-grained structure are used for the production of building ceramics. The task of using coarse non-traditional non-plastic components in the compositions of ceramic masses and the choice of rational sizes of their grains is relevant. The exclusion of pre-grinding determines the reduction of energy costs and, as a result, the cost of finished products. The paper offers an optiom of using diopside concentrate of various grain sizes in compositions with minor additions of clay and sodium silicate solution. The problems of stress development at the interface of grain and ligament contact, which in case of a negative outcome do not make it possible to obtain a strong structure of a ceramic shard, are solved. The presence of an insignificant voltage formed as a result of the relationship between the diopside and the forming glass phase is revealed, this does not prevent the consideration of the probability of obtaining a ceramic material. The study of the behavior of ceramic samples containing diopside of different granulometric composition when adding a solution of sodium-silicate glass after molding and firing shows the effectiveness of using diopside concentrate in 100-150 microns. Contacts of this size of diopside are wrapped in liquid glass during molding. A glass phase is formed when fired. In this case, the diopside is partially melted, but it is preserved and exists as an independent unit. A smaller grain size during sintering requires more glass phase, which leads to structural stresses, and with a larger size, not enough glass phase is formed and the strength of the material is significantly reduced. When studying the influence of grain size on the properties of the sample, the results of water absorption indicators of 7 %, mechanical compressive strength – 36 MPa, bending strength-17 MPa are obtained. It is found that the dispersion of diopside in 100–150 microns allows to develop a technology for the use of coarse-grained raw materials in the ceramic mass
Read full abstract