Abstract

AbstractRecent development of reactive force fields have enabled molecular dynamics simulations of interactions between silicate glasses and water at the atomistic scale. While multicomponent silicate glasses encompass a wide variety of compositions and properties, one common structural feature in these glasses is the combination of the network structure that is made up of silica tetrahedra linked through corner sharing interspersed with network modifiers like alkali and alkaline‐earth ions that break up the Si–O–Si linkages by forming nonbridging oxygen. In reactions with water, ion exchange between alkali ions in the glass and proton or hydronium in the solution, as well as hydrolysis reaction of the Si–O–Si linkages and subsequent silanol formation, is observed and well documented. We have used a set of recently developed reactive force field to investigate the reactions between water and the surfaces of silica and sodium silicate glasses of different compositions for reactions up to 8 nanoseconds. Our results indicate sodium leaching into water and diffusion of water molecules up to 25 Å into the glass surface. We examined the structural and compositional changes inside the glass and around the diffused ions and use these to explain the rates of silanol formation at the surface. We also observed proton transport in the glass which has an indirect influence on the silanol formation rates. While the surface of the glass was rough to start with, it undergoes further modification into a hydrated gel‐like structure in the glass for up to 5 Å in the higher alkali containing glasses. It was found that the leached sodium ions remain close to the interface and that fragments of silicate network from the surface is capable of dislodging from the bulk glass and enter the aqueous solution. These simulations thus provide insights into the formation and structure of an alteration layers commonly observed in multicomponent silicate glasses corroded in aqueous solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.