Social robots are being conceived with different characteristics and being used in different applications. The growth of social robotics benefits from advances in fabrication, sensing, and actuation technologies, as well as signal processing and artificial intelligence. This paper presents a design and implementation of the humanoid robotic platform Adam, consisting of a motorized human-like head with precise movements of the eyes, jaw, and neck, together with capabilities of face tracking and vocal conversation using ChatGPT. Adam relies on 3D-printed parts together with a microphone, a camera, and proper servomotors, and it has high structural integrity and flexibility. Adam’s control framework consists of an adequate signal exploitation and motor command strategy that allows efficient social interactions. Adam is an innovative platform that combines manufacturability, user-friendliness, low costs, acceptability, and sustainability, offering advantages compared with other platforms. Indeed, the platform’s hardware and software components are adjustable and allow it to increase its abilities and adapt them to different applications in a variety of roles. Future work will entail the development of a body for Adam and the addition of skin-like materials to enhance its human-like appearance.