Abstract
To overcome novel challenges in complex domestic environments, humanoid robots can learn from human teachers. We propose that the capability for social interaction should be a key factor in this teaching process and benefits both the subjective experience of the human user and the learning process itself. To support our hypothesis, we present a Human-Robot Interaction study on human-assisted visuomotor learning with the robot NICO, the Neuro-Inspired COmpanion, a child-sized humanoid. NICO is a flexible, social platform with sensing and manipulation abilities. We give a detailed description of NICO's design and a comprehensive overview of studies that use or evaluate NICO. To engage in social interaction, NICO can express stylized facial expressions and utter speech via an Embodied Dialogue System. NICO is characterized in particular by combining these social interaction capabilities with the abilities for human-like object manipulation and crossmodal perception. In the presented study, NICO acquires visuomotor grasping skills by interacting with its environment. In contrast to methods like motor babbling, the learning process is, in part, supported by a human teacher. To begin the learning process, an object is placed into NICO's hand, and if this object is accidentally dropped, the human assistant has to recover it. The study is conducted with 24 participants with little or no prior experience with robots. In the robot-guided experimental condition, assistance is actively requested by NICO via the Embodied Dialogue System. In the human-guided condition, instructions are given by a human experimenter, while NICO remains silent. Evaluation using established questionnaires like Godspeed, Mind Perception, and Uncanny Valley Indices, along with a structured interview and video analysis of the interaction, show that the robot's active requests for assistance foster the participant's engagement and benefit the learning process. This result supports the hypothesis that the ability for social interaction is a key factor for companion robots that learn with the help of non-expert teachers, as these robots become capable of communicating active requests or questions that are vital to their learning process. We also show how the design of NICO both enables and is driven by this approach.
Highlights
In the future, robots may perform complex visuomotor tasks in domestic environments as human assistants and companions
We present an update to the NICO platform with a focus on the properties that are relevant for this study and a review of related studies; we examine the assumption that social interaction and human-like sensorimotor abilities are a key to robots learning from humans by conducting a Human-Robot Interaction study with 24 participants in which we evaluate the effect of an active role of a humanoid in a grasp-learning experiment
The learning task for the HRI study was chosen for two reasons: first, it is a state-of-the-art approach for visuomotor learning from neurocognitive robotics, and second, the approach can run in the robot-guided condition without intervention from the experimenter
Summary
Robots may perform complex visuomotor tasks in domestic environments as human assistants and companions. A promising approach for coping with this complexity is to take inspiration from biological systems and develop neurocognitive learning models embodied in developmental robots (Cangelosi and Schlesinger, 2015) that learn, similar to a human child or infant, from interaction with the environment and imitation of, or teaching by, adult experts. Deep reinforcement learning promises human-level control (Mnih et al, 2015) through autonomous interaction with the environment. Many intermediate approaches have been developed that combine autonomous learning with human expert knowledge in the form of instructions (Cruz et al, 2016), or imitation (Gupta et al, 2016). We adopt the principle of scaffolding, a teaching approach based on collaborative interaction between the learner and an expert (Newson, 1979), which plays a crucial role in early human development, for a robot
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.