METTL16, a human m6A RNA methyltransferase, is currently known for its modification of U6 and MAT2A RNAs. Several studies have identified additional RNAs to which METTL16 binds, however whether METTL16 modifies these RNAs is still in question. Moreover, a recent study determined that METTL16 contains more than one RNA-binding domain, leaving the importance of each individual RNA-binding domain unknown. Here we examined the effects of mutating the METTL16 protein in certain domains on overall cell processes. We chose to mutate the N-terminal RNA-binding domain, the methyltransferase domain, and the C-terminal RNA-binding domain. With these mutants, we identified changes in RNA-binding ability, protein and RNA expression, cell cycle phase occupancy, and proliferation. From the resulting changes in RNA and protein expression, we saw effects on cell cycle, metabolism, intracellular transport, and RNA processing pathways, which varied between the METTL16 mutant lines. We also saw significant effects on the G1 and S phase occupancy times and proliferative ability with some but not all the mutants. We have therefore concluded that while METTL16 may or may not m6A-modify all RNAs it binds, its binding (or lack of) has a significant outcome on a variety of cell processes.