The subnivium is a seasonal refuge that exists at the interface between the snowpack and the ground, and provides a haven for a diversity of species to survive extreme winter temperatures. Due to the fitness of many plants and animals being strongly influenced by winter conditions, much attention has been given to changes in the timing of snow cover extent and duration in seasonally snow-covered environments; however, these broad-scale characteristics do not capture the finer-scale dynamics of the subnivium. To study the factors associated with subnivium development, we quantified three critical phenophases of the subnivium: establishment, maintenance, and disintegration along a latitudinal and land cover gradient in the Great Lakes Region of North America. We hypothesized that subnivium phenophases would depend primarily on snow depth and air temperature, but that these would be mediated by latitude and land cover. We found that patterns in both establishment and disintegration were affected by latitude more than land cover, but that variability in the timing of early season snowfall events overrode the effects of both factors in subnivium establishment. In contrast, disintegration was predictably later in more northerly sites, regardless of interannual variation in weather patterns. We found that the subnivium was the result of a balance between ambient temperature, snow depth, and snow density, but that ambient temperatures constrained the system by contributing to the frequency of snowfall and inducing changes in snow depth and density. Areas in lake effect zones, characterized by high snow depths and persistent snow cover, may be the last refugia for subnivia-dependent species given the predicted shifting climate regimes of the 21st century.
Read full abstract