Abstract Many microphysical process rates involving snow are proportional to moments of the snow particle size distribution (PSD), and in this study a moment estimation parameterization applicable to both midlatitude and tropical ice clouds is proposed. To this end aircraft snow PSD data were analyzed from tropical anvils [Tropical Rainfall Measuring Mission/Kwajelein Experiment (TRMM/KWAJEX), Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE)] and midlatitude stratiform cloud [First International Satellite Cloud Climatology Project Research Experiment (FIRE), Atmospheric Radiation Measurement Program (ARM)]. For half of the dataset, moments of the PSDs are computed and a parameterization is generated for estimating other PSD moments when the second moment (proportional to the ice water content when particle mass is proportional to size squared) and temperature are known. Subsequently the parameterization was tested with the other half of the dataset to facilitate an independent comparison. The parameterization for estimating moments can be applied to midlatitude or tropical clouds without requiring prior knowledge of the regime of interest. Rescaling of the tropical and midlatitude size distributions is presented along with fits to allow the user to recreate realistic PSDs given estimates of ice water content and temperature. The effects of using different time averaging were investigated and were found not to be adverse. Finally, the merits of a single-moment snow microphysics versus multimoment representations are discussed, and speculation on the physical differences between the rescaled size distributions from the Tropics and midlatitudes is presented.
Read full abstract