Root-induced changes play a crucial role in influencing the fate and speciation of potentially toxic elements (PTEs) in contaminated soils, but their role in the phytostabilization of waste slag sites remain unclear. The aim of this study was to determine the effect of four phytostabilization plants, Broussonetia papyrifera, Arundo donax, Robinia pseudoacacia, and Cryptomeria fortunei, planted in a zinc smelting waste slag site for 5 years on PTEs speciation and the mineral and aggregation characteristics at the interface of the waste slag-plant system. The results showed that the presence of a higher content of oxalic acid in the rhizosphere slags of the four plant species than in the bare slag. Revegetation of the waste slag with the four plant species significantly changed the mineral composition and morphology of the waste slag. The mass percentage of large particles (1-5mm) and small particles (0.5-1mm, 0.25-0.5mm, and <0.25mm) in the rhizosphere slags decreased and increased, respectively. The PTEs (Cu, Pb, Zn, and Cd) in most of the rhizosphere slags were mainly distributed within the small particles, and the enrichment coefficients of PTEs in the large particles and small particles were less than and greater than 1, respectively. The bioavailability of the PTEs in the waste slag increased with decreasing particle size. Root-induced the transformation of acid-soluble PTEs into their reducible, oxidizable, and residual forms in the different waste slag particles weathered in the rhizosphere. These results suggested that there are root-induced changes in the aggregation characteristics and geochemical behaviours of PTEs in waste slag fractions during the phytoremediation of waste slag sites.
Read full abstract