Currently, the market for wearable devices is expanding, with a growing trend towards the use of these devices for continuous-monitoring applications. Among these, real-time posture monitoring and assessment stands out as a crucial application given the rising prevalence of conditions like forward head posture (FHP). This paper proposes a wearable device that combines the acquisition of electromyographic signals from the cervical region with inertial data from inertial measurement units (IMUs) to assess the occurrence of FHP. To improve electronics integration and wearability, e-textiles are explored for the development of surface electrodes and conductive tracks that connect the different electronic modules. Tensile strength and abrasion tests of 22 samples consisting of textile electrodes and conductive tracks produced with three fiber types (two from Shieldex and one from Imbut) were conducted. Imbut's Elitex fiber outperformed Shieldex's fibers in both tests. The developed surface electromyography (sEMG) acquisition hardware and textile electrodes were also tested and benchmarked against an electromyography (EMG) gold standard in dynamic and isometric conditions, with results showing slightly better root mean square error (RMSE) values (for 4 × 2 textile electrodes (10.02%) in comparison to commercial Ag/AgCl electrodes (11.11%). The posture monitoring module was also validated in terms of joint angle estimation and presented an overall error of 4.77° for a controlled angular velocity of 40°/s as benchmarked against a UR10 robotic arm.
Read full abstract