Compromising between accuracy and rapidity is an important issue in analytics and diagnostics, often preventing timely and appropriate reactions to disease. This issue is particularly critical for infectious diseases, where reliable and rapid diagnosis is crucial for effective treatment and easier containment, thereby reducing economic and societal impacts. Diagnostic technologies are vital in disease modeling, tracking, treatment decision making, and epidemic containment. At the point-of-care level in modern healthcare, accurate diagnostics, especially those involving genetic-level analysis and nucleic acid amplification techniques, are still needed. However, implementing these techniques in remote or non-laboratory settings poses challenges because of the need for trained personnel and specialized equipment, as all nucleic acid-based diagnostic techniques, such as polymerase chain reaction and isothermal nucleic acid amplification, require temperature cycling or elevated and stabilized temperatures. However, in smart food packaging, there are approved and commercially available methods that use temperature regulation to enable autonomous heat generation without external sources, such as chemical heaters with phase change materials. These approaches could be applied in diagnostics, facilitating point-of-care, electricity-free molecular diagnostics, especially with nucleic acid-based detection methods such as isothermal nucleic acid amplification. In this review, we explore the potential interplay between self-heating elements, isothermal nucleic acid amplification techniques, and phase change materials. This paves the way for the development of truly portable, electricity-free, point-of-care diagnostic tools, particularly advantageous for on-site detection in resource-limited remote settings and for home use.
Read full abstract