In this work, we investigate the ill-conditioned problem of a separable, nonlinear least squares model by using the variable projection method. Based on the truncated singular value decomposition method and the Tikhonov regularization method, we propose an improved Tikhonov regularization method, which neither discards small singular values, nor treats all singular value corrections. By fitting the Mackey–Glass time series in an exponential model, we compare the three regularization methods, and the numerically simulated results indicate that the improved regularization method is more effective at reducing the mean square error of the solution and increasing the accuracy of unknowns.
Read full abstract