Abstract

In this paper, a novel self-organizing fuzzy neural network with an adaptive learning algorithm (SOFNN-ALA) for nonlinear system modeling and identification in industrial processes is proposed. To efficiently enhance the generalization capability, the proposed SOFNN-ALA is designed by using both structure identification and parameter estimation simultaneously in the learning process. In the structure identification phase, the rule neuron with the highest neuronal activity will be split into two new rule neurons. Meanwhile, the redundant rule neurons with small singular values will be removed to simplify the network structure. In the parameter estimation phase, an adaptive learning algorithm (ALA), which is designed based on the widely used Levenberg-Marquardt (LM) optimization algorithm, is adopted to optimize the network parameters. The ALA-based learning algorithm can not only speed up the convergence speed but also enhance the modeling performance. Moreover, we carefully analyze the convergence of the proposed SOFNN-ALA to guarantee its successful practical application. Finally, the effectiveness and efficiency of the proposed SOFNN-ALA is validated by several examples. The experimental results demonstrate that the proposed SOFNN-ALA exhibits a better comprehensive performance than some other state-of-the-art SOFNNs for nonlinear system modeling in industrial applications. The source code can be downloaded from https://github.com/hyitzhb/SOFNN-ALA.git.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.