Unbonded flexible risers consist of several helical and cylindrical layers, which can undergo large bending deformation and can be installed in different configurations to adapt to harsh marine environments; thus, they can be applied to transport oil and gas resources from ultra-deep waters (UDW). Due to their special geometric characteristics, they can ensure sufficient axial tensile stiffness while having small bending stiffness, which can undergo large deflection bending deformation. In recent years, the development of unbonded flexible risers has been moving in an intelligent, integrated direction. This paper presents a review of unbonded flexible risers. Firstly, the form and properties of each interlayer of an unbonded flexible riser are introduced, as well as the corresponding performance and configuration characteristics. In recent years, the development of unbonded flexible risers has been evolving, and the development of machine learning on unbonded flexible risers is discussed. Finally, with emphasis on exploring the design characteristics and working principles, three new types of unbonded flexible risers, an integrated production bundle, an unbonded flexible riser with an anti-H2S layer, and an unbonded flexible riser with a composite armor layer, are presented. The research results show that: (1) the analytical methods of cross-sectional properties of unbonded flexible risers are solved based on ideal assumptions, and the computational accuracy needs to be improved. (2) Numerical methods have evolved from equivalent simplified models to models that account for detailed geometric properties. (3) Compared with ordinary steel risers, the unbonded flexible riser is more suitable for deep-sea resource development, and the structure of each layer can be designed according to the requirements of the actual environment.