The widespread availability of digital image-processing software has given rise to various forms of image manipulation and forgery, which can pose a significant challenge in different fields, such as law enforcement, journalism, etc. It can also lead to privacy concerns. We are proposing that a privacy-preserving framework to encrypt images before processing them is vital to maintain the privacy and confidentiality of sensitive images, especially those used for the purpose of investigation. To address these challenges, we propose a novel solution that detects image forgeries while preserving the privacy of the images. Our method proposes a privacy-preserving framework that encrypts the images before processing them, making it difficult for unauthorized individuals to access them. The proposed method utilizes a compression quality analysis in the encrypted domain to detect the presence of forgeries in images by determining if the forged portion (dummy image) has a compression quality different from that of the original image (featured image) in the encrypted domain. This approach effectively localizes the tampered portions of the image, even for small pixel blocks of size 10×10 in the encrypted domain. Furthermore, the method identifies the featured image's JPEG quality using the first minima in the energy graph.
Read full abstract