We present spectroscopic measurements focusing on a detailed investigation of temperature dependence of absorption, emission and gain in the uniaxial Yb:YLF laser gain medium. Measurements are carried out in the 78–300 K range, but we especially targeted our attention to the 78–150 K interval, which is the desired working range of liquid nitrogen cooled cryogenic Yb:YLF lasers/amplifiers. A tunable (770–1110 nm) Cr:LiSAF laser with around 100 mW continuous-wave output power and sub-0.2 nm bandwidth is used as an excitation source. The average power of the Cr:LiSAF laser is low enough to prevent heating of the sample, and its spectral flux (W/nm) is high enough to enable large signal-to-noise ratio measurements. Measured absorption data is used to cross-check the validity of the emission measurements, while the measured temperature dependent small-signal gain profile provided a second independent confirmation. The acquired absorption cross section curves match the previous literature quite well, whereas the measured strength of c-axis emission is stronger than some of the earlier reports. Direct measurements of small signal gain confirmed the emission cross section data, where single pass gain values above 50 have been measured for the 995 nm transition of E//c axis at 78 K. We further provide simple analytic formulas for the measured temperature dependence of absorption and emission cross section. We hope the presented results to be useful for the development of next generation of cryogenic Yb:YLF laser and amplifier systems.
Read full abstract