The mission reliability and success probability estimation of multistate systems under complex mission conditions are studied. The reliability and success probability of multistate phased mission systems (MS-PMS) is difficult to use analytic modeling and solving. An estimation approach for mission reliability and success probability based on Monte Carlo simulation is established. By introducing accelerated sampling methods such as forced transition and failure biasing, the sampling efficiency of small-probability events is improved while ensuring unbiasedness. The ship’s propulsion and power systems are used as applications, and the effectiveness of the method is verified by a numerical example. Under complex missions, such as missions with different mission time and their combinations, and phased-missions, the proposed method is superior in small-probability event sampling than the crude simulation method. The calculation example also studies the influence of mission factors or system reliability and maintainability factors on system availability and mission success probability, and analyzes the relationship between different mission types and system availability and success probability.
Read full abstract