The spring-neap cycle of global energy dissipation by ocean tides is calculated with a view to trying to explain an observed anomaly in the tidal fluctuations in the length of day. Calculations are performed in three ways: dissipation by friction linearly proportional to semidiurnal tide velocity, by quadratic friction, and by the torques of the lunar and solar tidal forces on the solar and lunar ocean tides, respectively. All methods give comparable results equivalent to an amplitude of about 0.1 μs change in the length of day with a small phase lag. These are inadequate to explain the observed anomaly of about 3 μs and 0.1 rad phase lag. Further investigations, to determine the generation of a non-equilibrium global MSf wave of equatorial amplitude 0.9 mm by nonlinear interactions in shallow seas using global tide models and observations, are suggested.