Abstract
The small phase-lag between velocities observed at different chromospheric levels is interpreted as being due to acoustic waves reflected by the very hot atmospheric layers of the chromosphere-corona transition zone. We consider first an isothermal slab, then a realistic solar atmospheric model and calculate weighting functions for velocities in Ca ii lines. It is shown that taking into account these functions and integrating over horizontal wave numbers leads to a good agreement with previous observations (Mein, 1977) in the case of 8498 and 8542 Ca ii lines. For the K line, the less good agreement shows that magnetoacoustic waves become important in the upper chromospheric layers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.