Recently, in order to satisfy the requirements of commercial communication systems and military communication systems, automatic modulation classification (AMC) schemes have been considered. As a result, various artificial intelligence algorithms such as a deep neural network (DNN), a convolutional neural network (CNN), and a recurrent neural network (RNN) have been studied to improve the AMC performance. However, since the AMC process should be operated in real time, the computational complexity must be considered low enough. Furthermore, there is a lack of research to consider the complexity of the AMC process using the data-mining method. In this paper, we propose a correlation coefficient-based effective feature selection method that can maintain the classification performance while reducing the computational complexity of the AMC process. The proposed method calculates the correlation coefficients of second, fourth, and sixth-order cumulants with the proposed formula and selects an effective feature according to the calculated values. In the proposed method, the deep learning-based AMC method is used to measure and compare the classification performance. From the simulation results, it is indicated that the AMC performance of the proposed method is superior to the conventional methods even though it uses a small number of features.
Read full abstract