Fibrous soft actuators with high molecular anisotropy are of interest for shape morphing from 1D to 2D and 3D in response to external stimuli with high actuation efficiency. Nevertheless, few have fabricated fibrous actuators with controlled molecular orientations and stiffness. Here, we fabricate filaments from liquid crystal networks (LCNs) with segmental crosslinking density and gradient porosity from a mixture of di-acrylate mesogenic monomers and small-molecule nematic or smectic liquid crystals (LCs) filled in a capillary. During photopolymerization, phase separation between the small-molecule LCs and LCN occurs, making one side of the filament considerably denser than the other side. To direct its folding mode (bending or twisting), we control the alignment of LC molecules within the capillary, either along or perpendicular to the filament long axis. We show that the direction of UV exposure can determine the direction of phase separation, which in turn direct the deformation of the filament after removal of the small-molecule LCs. We find that the vertical alignment of LCs within the filament is essential to efficiently direct bending deformation. By photopatterning the filament with segmental crosslinking density, we can induce a reversible folding/unfolding into 2D and 3D geometries triggered by deswelling/swelling in an organic solvent. Moreover, by taking advantage of the large elastic modulus of LCNs and large contrast of the modulus before and after swelling, we show that the self-folded LCP filament could act as a strong gripper.