Abstract

Amorphous and melted components can segregate into the interlamellar or interspherulitic regions of polymer crystals in their blends/mixtures; this phase behavior strongly influences the physical properties and functions of materials. However, it is experimentally difficult to evaluate the spatial distributions of the other components in polymer crystals. Herein, we use a small-molecule liquid crystal (LC) as a probe and find that it forms different solid phases when mixed with the semicrystalline polymer poly(l-lactic acid) (PLLA). The LC can form the metastable phase at the lower PLLA crystallization temperature but the stable phase at the higher PLLA crystallization temperature in the PLLA/LC mixture. The formation of LC metastable and stable phases is attributed to the segregation of the LC material in the interlamellar and interspherulitic regions of polymer crystals, respectively. This study provides a potential way to evaluate the spatial segregation in the crystallization-induced microphase separation of polymer blends/mixtures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.