Abstract

Based on the Leslie-Ericksen theory for small molecule liquid crystals, a calculation model was established for liquid crystal cells with free-state upper plates. Under the specified initial boundary conditions, the 2nd-order Runge-Kutta method and the central difference method were applied to conduct spatial-temporal discretization of the equation set. Additionally, a calculation program was compiled on MATLAB. Then, the calculation parameters were adjusted to obtain the influences of the liquid crystal cell thickness and the electric field parameters imposed at 2 ends of the cell on the liquid crystalline backflow. The results indicate that, the size of the liquid crystal director alternates with the alternation of the electric field imposed on the upper and lower plates of the liquid crystal cell. With the increment of the cell thickness, the displacement of the upper plate within a period also increases. The duty ratio of the electric field imposed at 2 ends of the cell has little impact on the upper plate speed, but has large influence on the occurring time point of the maximal upper plate speed. Compared with the experimental data, the calculated displacement values of the upper plate of the liquid crystal cell are of the same orders, and the movement loci are in good agreement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.