Cathedral roofs are commonly used when constructing small houses in Sweden. In contrast to roof constructions with a cold attic, where frequent moisture damage has been noted, the cathedral roof is difficult to access for inspection. Furthermore, Swedish building regulations sets high demands regarding moisture safety, although there are no clear guidelines for their compliance. Hence, designing a cathedral roof must be done with great care. Previous studies investigating moisture safety in cathedral roofs, applies a constant air exchange in the ventilated air cavity. In this study a cathedral roof, ventilated from eave to eave, was analysed by examining the relevance of considering the variation in cavity air flow when conducting coupled heat and moisture calculations. The varied cavity air flow was calculated in an air flow model, considering wind and thermal buoyancy as driving forces. The accuracy of moisture safety assessments using the MRD model via hygrothermal calculations in WUFI Pro were also studied. Comparing moisture calculations with measurements showed high similarity when using a model with constant cavity air flow, and even higher resemblance when using a model with varied air flow. When actual conditions are sought, the study indicated that pinpointing important parameters, such as initial moisture content and moisture related material properties, would further increase precision in moisture calculations.