Schooling behavior is an adaptive trait of important biological and ecological significance in fish species. However, the question of how aerobic capacity and environmental factors (i.e., food and water velocity) affect the spatial positioning within fish schools has received little attention. Our study measured the aerobic capacity—as indicated by standard metabolic rate (SMR), maximum metabolic rate (MMR) and aerobic scope (AS)—and swimming performance of juvenile qingbo (Spinibarbus sinensis) and filmed their schooling behavior in a swim tunnel under both a control treatment and food stimulus treatment at three water velocities (20, 30 and 40cms−1). Neither aerobic capacity nor swimming performance was related to spatial position within schools. Food stimulation did not trigger any change in the characteristics of spatial position at three water velocities. However, an intra-school positional preference was found between water velocities under the control treatment and food stimulus treatment. Individuals who preferred the rear of the school had smaller coefficients of variation in position under the two treatments, but this behavior was not correlated with any parameters for metabolic rates. Inter-school social interaction level, as indicated by total chase times, was not affected by either water velocity or food appearance. Although aerobic capacity and food stimulus did not influence the spatial position of individuals within schools, individual qingbo had spatial positional preferences within schools between different water speeds.
Read full abstract