Abstract

Earthquake input energy spectra for four soil site classes, four hysteresis models, and five ductility levels are developed for far-source ground motion effect. These energy spectra are normalized by a quantity called velocity index (VI). The use of VI allows for the creation of dimensionless spectra and results in smaller coefficients of variation. Hysteretic energy spectra are then developed to address the demand aspect of an energy-based seismic design of structures with 5% critical damping and ductility that ranges from 2 to 5. The proposed input and hysteretic energy spectra are then compared with response spectra generated using nonlinear time history analyses of real ground motions and are found to produce reasonably good results over a relatively large period range.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.