Microbial mediated iron cycling drives the biogeochemical cycling of carbon, nitrogen, sulfur, and phosphorus. However, the fate of the microbial community and the relative metabolic pathways in paddy soil after the addition of biogas slurry are poorly understood. In this study, the response of functional genes was investigated by growing one-season rice in paddy soils in a pot experiment. Seven treatments were prepared: 1) control (CK); 2) organic carbon (OC); 3) fertilizer (F); 4) 5% of biogas slurry (B05); 5) 10% of biogas slurry (B10); 6) 15% of biogas slurry (B15); 7) 20% of biogas slurry (B20). In the biogas slurry treatments, Geobacter increased more than in the other treatments during rice growth, which were structured by TOC. Particularly, in the B10 treatment, the relative abundance of Geobacter was 1.6 and 14.8 times higher than that of CK at the heading and mature stages, respectively. At the heading stage, the addition of biogas slurry and OC shifted the microbial phosphorus-transformation communities differently. There were no significant differences in the carbon, nitrogen, and sulfur metabolic pathways between the two treatments. At the mature stage, the carbon: nitrogen: phosphorus balance was significantly influenced by the regulation of functional gene expression and metabolic activities. These findings provide insight into the key factors affecting carbon, nitrogen, sulfur, phosphorus, and iron during rice growth after carbon inputs.