Abstract

Mouse embryonic fibroblasts (MEFs) accessibility coupled with their simple generation make them as a typical embryonic cell model and feeder layer for in vitro expansion of pluripotent stem cells (PSCs). In this study, a mechanical isolation technique was adopted to isolate MEFs and the efficiency of this technique was compared with enzymatic digestion method.The suspended MEFs were prepared either by mechanical method or 0.25% trypsin enzymatic digestion. The effect of tissue processing on cell apoptosis/necrosis, morphology, viable cell yield, population doubling time, surface marker expression, and the capacity to support PSCs were determined. The mechanical method yielded a significantly higher number of viable cells. However, it showed similar morphology and proliferation characteristics as compared to enzymatic digestion. The mechanical method induced slight apoptosis in MEFs; however, it did not exert the necrotic effect of trypsinization. Treatment of tissue slurry with trypsin solution caused cell lysis and subsequently cell clump formation. Mechanically isolated cells exhibited a higher expression of the MEF surface antigens Sca1, CD106, and CD105. The PSCs on mechanically isolated MEFs displayed a higher expression of pluripotency genes, and formed more compact colonies with a stronger tendency to crowding compared with those cultured on cells isolated by enzymatic digestion.The mechanical method based on tissue inter-syringe processing is relatively a rapid and simple method for MEF isolation. Compared to the enzymatic digestion, the cells obtained from this method show higher expression of embryonic fibroblasts markers and a more functional capacity in supporting PSCs culture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call