Samples from three genetic horizons of an acidic forest soil were equilibrated with solutions containing Cd, Cu, and Zn in the presence and absence of a municipal sewage sludge leachate. Copper adsorption was greater than Cd and Zn in all three horizons, while Cd and Zn adsorption was quite similar. Relative to a NaN03 background solution, sludge leachate reduced Cu adsorption in all horizons; however, in the presence of leachate Zn adsorption increased in the B2 and C horizons, while Cd adsorption decreased in the Al and was unaffected in the B2 and C horizons. Distribution coefficients generally increased as solution concentration and adsorption increased. In all horizons additions of Cd and Zn were able to reduce apparent surface charge. Copper not only reduced surface charge in the Al horizon, but caused a charge reversal in the 132 and C horizons. Adsorption data were best fit by linear or Freundlich equations. Differences in adsorption between sludge leachate and NaN03 solutions could not be explained simply by differences in metal activities as calculated using the GEOCHEM program. Competition from cations and organics present m the sludge leachate appears to contribute to lower metal adsorption.
Read full abstract