This paper aims to investigate the effects of the porous baffles on the suppression of sloshing for the tanks with axisymmetric geometries under lateral excitation. Based on the assumptions of inviscid, irrotational, incompressible liquid and small amplitude sloshing, an axisymmetric boundary element method (BEM) for 3D Laplace equation is derived by using the Green's theorem together with the weighted residual method. And a zoning method is employed to model fluid domain in the tanks with complex porous baffles. Meanwhile, the porous baffles are treated motioning together with the tanks, and the velocity across the porous baffle is assumed to be linearly proportional to the pressure gradient between each side of the porous baffle. And the mechanism of suppressing the sloshing response is mainly the energy dissipation of the fluid passing through the porous baffle. Moreover, the linear free surface boundary conditions are also used to solve the governing equations. Compared with other numerical methods, the most prominent advantage of the BEM in solving axisymmetric potential problem is that only the boundaries of half the cross-section instead of the entire problem domain should be discretized, which can cut down large amount of memory and time costs. The present method is verified by comparing the numerical results with the existing literatures, and excellent agreements are obtained. Meanwhile, the proposed models are applied to investigate the effects of the porous baffles on sloshing response in circular cylindrical, annular cylindrical and conical tanks. The effects of the porous baffle length, porous-effect parameter, installation angle and baffle height on the sloshing force, natural frequency and surface elevation are studied. Additionally, some typical sloshing pressure distributions, velocity potential contours and velocity fields are plotted. The results show that swirls at the tips of the baffles can be observed in many cases, and the top-mounted porous baffle makes more significant suppression effects on sloshing response than that of bottom-mounted porous baffle, while increasing the number of ring porous baffles can achieve better restraint effects on sloshing response. And increasing the baffle length of the horizontal wall-mounted ring porous baffle can significantly decrease the sloshing frequencies, as well as the first non-dimensional natural frequency decreases with decrease in porous-effect parameter of the coaxial porous baffle. In addition, remarkable effects on sloshing can be obtained when reasonable designed by selecting the optimal porous-effect parameter, installation angle and baffle height. And this paper can be a useful guide for the seismic design and analysis of many actual liquid storage tanks (such as the Advanced Passive PWR, large water cooling tower, etc.).
Read full abstract