Abstract

The sloshing response of fluid in a rigid circular cylindrical tank with multiple rigid annular baffles and subjected to horizontal and pitching excitations is investigated. The subdomain method for fluid sloshing is utilized to obtain exact solutions to the convective velocity potential of liquid. By substituting the velocity potential of liquid into free surface sloshing equation, the response equation under the horizontal excitation is constructed. According to producing the similar lateral force and moment as analytical solutions undergoing horizontal motion, an equivalent mass-spring model is developed to replace continuous liquid. Based on the model, dynamic response of liquid sloshing in the tank under the horizontal and pitching excitations is obtained. Compared with the reported results, the lateral force is in excellent agreement with literature solutions and the overturning moment shows good agreement with available solutions under the excitation with low frequency. The proposed model can be employed to simplify dynamics of complicated liquid-structure systems undergoing pitching motion without tedious derivation and great amount of calculation. The effects of the liquid height, the positions and sizes of the baffles on the influence coefficient factor of pitching motion and the steady-state response are revealed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call