Enhancing strength or hardness is a widely employed strategy to improve wear resistance of ZL109 aluminum alloy at elevated temperatures. This study aimed to investigate the effects of various strengthening treatments on the wear performance of ZL109 aluminum alloy. Three strengthening methods, namely structural refinement, strain hardening, and precipitation strengthening, were employed to achieve a similar hardness level. Subsequently, the wear tests were conducted using a reciprocating ball-on-disk tribometer under different temperature conditions. The results showed that all the strengthening samples exhibited a similar wear rate (approximately 7.0 × 10−4 mm3/N·m) at room temperature. However, at 250 °C, the precipitation strengthening sample performed best with a wear rate of 1.32 × 10−3 mm3/N·m, followed by the strain hardening and structural refinement samples (approximately 1.7 × 10−3 mm3/N·m). This superior performance was attributed to the precipitation phase, which could effectively maintain material strength through dislocation pinning. By contrast, dynamic recovery and recrystallization behavior weakened the effectiveness of strain hardening, while crystal growth diminished the efficacy of structural refinement. In addition, the wear mechanisms transitioned from abrasion to adhesion and slight oxidative wear as the temperature increased.