For each nge 0, let mu _n be a tight probability measure on the Borel sigma -field of a metric space S. Let (T,{mathcal {C}}) be a measurable space such that the diagonal bigl {(t,t):tin Tbigr } belongs to {mathcal {C}}otimes {mathcal {C}}. Fix a measurable function g:Srightarrow T and suppose mu _n=mu _0 on g^{-1}({mathcal {C}}) for all nge 0. Necessary and sufficient conditions for the existence of S-valued random variables X_n, defined on the same probability space and satisfying Xn⟶a.s.X0,Xn∼μnandg(Xn)=g(X0)for alln≥0,\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\begin{aligned} X_n\\overset{\ ext {a.s.}}{\\longrightarrow }X_0,\\quad X_n\\sim \\mu _n\\,\ ext { and } \\,g(X_n)=g(X_0)\\,\ ext { for all }n\\ge 0, \\end{aligned}$$\\end{document}are given. Such conditions are then applied to several examples. The tightness condition on mu _0 can be dropped at the price of some assumptions on S and g.