Using the equivalent block two-by-two real linear systems and relaxing technique, we establish a new block preconditioner for a class of complex symmetric indefinite linear systems. The new preconditioner is much closer to the original block two-by-two coefficient matrix than the Hermitian and skew-Hermitian splitting (HSS) preconditioner. We analyze the spectral properties of the new preconditioned matrix, discuss the eigenvalue distribution and derive an upper bound for the degree of its minimal polynomial. Finally, some numerical examples are provided to show the effectiveness and robustness of our proposed preconditioner.
Read full abstract