Abstract
In order to solve large sparse saddle point problems (SPP) quickly and efficiently, Wang and Zhang recently studied the preconditioned accelerated Hermitian and skew-Hermitian splitting (PAHSS) methods. Through accelerating the PAHSS iteration algorithms by using parameterized Uzawa (PU) method, a preconditioned AHSS-PU alternating splitting iterative method (PAHSS-PU method) for solving saddle point problems is proposed in this paper. The convergence results of this new method are given under some suitable conditions. Moreover, we can obtain that if the parameters are suitable selected, then the PAHSS-PU algorithm will outperform the PAHSS algorithm and some Uzawa-type methods in the same precision condition. Numerical experiments are presented to illustrate the theoretical results and examine the numerical effectiveness of the PAHSS-PU method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.