Abstract

For large sparse saddle point problems, Bai and Wang recently studied a class of parameterized inexact Uzawa methods (see Z.-Z. Bai, Z.-Q. Wang, On paramaterized inexact Uzawa methods for generalized saddle point problems, Linear Algebra Appl. 428 (2008) 2900–2932). In this paper, we generalize these methods and propose a class of generalized inexact parameterized iterative schemes for solving the saddle point problems. We derive conditions for guaranteeing the convergence of these iterative methods. With different choices of the parameter matrices, the generalized iterative methods lead to a series of existing and new iterative methods including the classical Uzawa method, the inexact Uzawa method, the GSOR method and the GIAOR method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.