It is not clear which selective pressures balance the strong fecundity advantage associated with large female body size in insects. A positively size-dependent mortality risk could provide a solution. In aviary experiments with artificial larvae, we studied if larger larvae of folivorous insects are more readily found (= detectability) and/or attacked (= acceptability) by birds. As size and colouration are likely to interact in determining birds’ responses, both cryptic and conspicuous prey items were used. As detectability is likely to be context-dependent, both simple (smooth) and complex (plants) backgrounds were used in respective experiments. In the conspicuous larvae, acceptability correlated negatively with prey size. However, their detectability was context dependent, being positively correlated with size on the simple background, whereas no significant effect was found on the complex background. Surprisingly, cryptic larvae showed no correlation between detectability and size, and there was only a weak tendency for birds to attack large larvae more readily. On the basis of a quantitative model, we conclude that the effect of positively size dependent bird predation, as a single factor, is not likely to counterbalance the fecundity advantage in cryptic species, and may thus not be crucial in determining the optimum for body sizes in these insects. In conspicuous species, there is a potential for different outcomes, because detectability and acceptability affect survival in different directions. The net outcome is, therefore, likely to be highly context-dependent. Furthermore, our results provide an explanation for the recently reported absence of systematic body-size differences between cryptic and conspicuous Lepidopteran larvae: although conspicuous larvae benefit from increasing their warning signal when growing larger, they also suffer a much sharper rise in detectability.
Read full abstract