The viaduct is an important infrastructure for urban sustainable development, but it will inevitably pass through a coal mining subsidence area in coal resource-based cities, which poses a threat to the construction and operation of the viaduct. However, there is a lack of research on long time-series monitoring and assessing the safety of elevated bridges above subsidence areas, both domestically and internationally. In this study, a resource-based city viaduct in Shandong, China, was selected as the research object, utilizing SBAS-InSAR technology for deformation monitoring during bridge construction and post-opening phases. The viaduct based on the goaf was analyzed by the key settlement subsection. Before completing construction (March 2019 to December 2020), research revealed that the cumulative maximum deformation in the bridge area was 44mm and the maximum uplift was 22 mm, with overall stability in the underlying subsidence area. After completion (January 2021 to July 2023), the cumulative maximum deformation value in the elevated bridge area was 10mm and the maximum uplift was 6 mm, indicating minimal fluctuations over three years, maintaining overall stability. This stable condition ensures the safety of construction and operation of regional elevated bridges. These findings not only support the safe operation of bridges in underlying subsidence areas but also provide a new approach to sustainable areas globally, especially in coal resource-based urban areas.
Read full abstract