Translucent monolithic zirconia ceramics have been applied in dental clinics due to their esthetic translucent formulations and mechanical properties. Considering inherent ceramic brittleness, adhesive bonding with resin composite increases the fracture resistance of ceramic restorations. However, zirconia is a chemically stable material that is difficult to adhesively bond with resin. To investigate the influences of SiO2-ZrO2 coatings on adhesive bonding of zirconia and the surface characterization of those coatings. Translucent zirconia discs were classified into groups based on surface treatments: CT (control), SB (sandblasting), C21(SiO2:ZrO2=2:1), C11(SiO2:ZrO2=1:1), and C12 (SiO2:ZrO2=1:2) (n=10). Surface characterization of coatings on zirconia were analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), surface roughness assessment (Ra), X-ray diffraction (XRD), water contact angle (WCA), translucency parameter (TP), and shear bond strength (SBS). Two-way ANOVA for shear bond strength results and ANOVA for Ra and WCA were performed. SEM images revealed SiO2 islands on zirconia disks coated with SiO2-ZrO2. Surface roughness of C12, C11, and C21 groups was significantly larger than those of groups SB and CT (p<0.05). XRD results showed that phase transformation of zirconia disks was detected only in the SB group. In addition, SiO2-ZrO2 coatings reduced WCA. The translucency decreased only in group C21. Group C11 showed the highest shear bond strength under both aging conditions. SiO2-ZrO2 coating is a promising method to enhance the adhesive resin bonding of translucent zirconia without causing phase transformation of translucent zirconia.
Read full abstract