A balloon has been developed that completely fills the choana, preventing water from leaking into the pharynx even when the water is entering into the nasal cavity at a rate of 1000 ml per minute. The balloon enables endoscopic sinus surgery (ESS) to be safely performed in "flowing water". This surgical technique is similar to that used in transurethral resections of the prostate because the tip of the endoscope is kept clean, and blood, debris and resected tissues are continuously removed by the water flow. In addition, the water pressure helps to suppress bleeding. This technique enables ESS to be performed with greater ease and efficiency. We have performed ESS in flowing water on 38 patients with chronic sinusitis under local anaesthesia. No complications, such as water leakage into the pharynx, were encountered, and only a few patients felt discomfort from the insertion of the balloon. Even if the balloon had burst, an emergency could have been easily prevented by withdrawing the endoscope from the nasal cavity and stopping the flow of water. Ultrasonography (USG) was used to examine the water-filled nasal cavity during surgery (SSD-2000 and Micro Tip Radial (ASU-101); Aloka, Ltd., Japan). Using USG, the middle turbinate, the inferior turbinate and the nasal septum could be visualized in a single coronal image. When the sensor was in the posterior ethmoid sinus, the orbit and its optic nerve could also be visualized. Since this surgery is performed under local anesthesia, eye movements can rapidly alter the position of the optic nerve. Thus, visualization of the optic nerve's exact position is extremely important. Unfortunately, USG is not very useful for localizing structures and guiding the surgeon to distant tumors or cysts located behind thick bones, since ultrasound can not penetrate hard masses or bones. In this situation, navigation systems are more reliable than USG. Nevertheless, USG is often useful for depicting surgical sites, especially during a crisis, if the medial wall of the orbit is thin or if the skull base has been broken, exposing the dura. USG can also provide early warning of an impending complication. USG also has several practical advantages over navigation systems: the cost of USG is much lower, preparation for surgery is unnecessary, visual information can be obtained in real time, and measurement accuracy (estimated to be about 2 mm for navigation systems) is not a consideration. Thus, USG can be easily used to avoid complications in most surgeries for chronic sinusitis. Flowing water also allows the nasal eavity to be completely washed and sterilized at the end of the surgery. This not only prevents post-operative infection, but enables sinus function to be more quickly recovered. In addition, the pressure from the balloon also prevents post-operative nasal hemorrhaging. This allows patients to be safely discharged from the hospital at an earlier time. The balloon can also be used for non-surgical purposes. For example, emergent epistaxis can be easily stopped by the insertion of this balloon, even if the doctor is not an otorhinolaryngologist. In addition, the balloon's soft pressure allows it to be left in the nose for long periods without any complications. We conclude that this simple balloon, which we have named the "Noda Balloon", is extremely useful for nasal treatments.