We develop the expansion method of singular integral equation (SIE) for hypersingular integral equation (HSIE). Relating the hypersingular integrals to Cauchy principal-value integrals, we interpolate the kernel and the density functions to the truncated Chebyshev series of the second kind. The corresponding convergence results for the functions <svg style="vertical-align:-3.56265pt;width:103.45px;" id="M1" height="20.549999" version="1.1" viewBox="0 0 103.45 20.549999" width="103.45" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.05)"><path id="x1D453" d="M619 670q0 -13 -9 -26t-18 -19q-13 -10 -25 2q-36 38 -66 38q-31 0 -54.5 -50t-45.5 -185h120l-20 -31l-107 -12q-23 -138 -57 -293q-27 -122 -55 -184.5t-75 -109.5q-60 -61 -114 -61q-25 0 -47.5 15t-22.5 31q0 17 31 44q11 8 20 -1q10 -11 31 -19t35 -8q26 0 47 19
q34 34 71 253l54 315h-90l-3 12l31 30h70q28 138 90 204q35 37 75 57.5t70 20.5q26 0 45 -14t19 -28z" /></g><g transform="matrix(.017,-0,0,-.017,15.684,16.05)"><path id="x2208" d="M448 1h-83q-118 0 -201.5 74.5t-83.5 179.5t83.5 179.5t201.5 74.5h83v-50h-84q-87 0 -150.5 -51.5t-73.5 -127.5h308v-50h-308q10 -76 73.5 -127.5t150.5 -51.5h84v-50z" /></g><g transform="matrix(.017,-0,0,-.017,29.385,16.05)"><path id="x1D436" d="M682 629q-1 -16 -1.5 -72t-2.5 -86l-31 -4q-5 92 -51 129t-139 37q-100 0 -177 -49t-116 -125t-39 -162q0 -122 66 -201t182 -79q83 0 137 42.5t112 128.5l26 -15q-12 -31 -42.5 -88t-45.5 -75q-139 -27 -199 -27q-148 0 -243 81.5t-95 226.5q0 173 129.5 274.5
t325.5 101.5q114 0 204 -38z" /></g> <g transform="matrix(.012,-0,0,-.012,41.375,7.888)"><path id="x2113" d="M363 114l21 -20q-62 -106 -161 -106q-61 0 -94 40t-33 138v56l-54 -40l-14 27l68 57v89q0 112 15.5 166t49.5 91q43 46 96 46q44 0 71 -32.5t27 -88.5q0 -41 -17.5 -81.5t-49.5 -76t-55.5 -57t-55.5 -46.5v-87q0 -138 81 -138q60 0 105 63zM177 421v-101q117 105 117 217
q0 38 -15 60.5t-41 22.5q-34 0 -47.5 -46.5t-13.5 -152.5z" /></g> <g transform="matrix(.017,-0,0,-.017,46.887,16.05)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,52.769,16.05)"><path id="x5B" d="M290 -163h-170v866h170v-28q-79 -7 -94 -19.5t-15 -72.5v-627q0 -59 14.5 -71.5t94.5 -19.5v-28z" /></g><g transform="matrix(.017,-0,0,-.017,58.634,16.05)"><path id="x2212" d="M535 230h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,68.612,16.05)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.017,-0,0,-.017,76.771,16.05)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.017,-0,0,-.017,83.469,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,91.628,16.05)"><path id="x5D" d="M226 -163h-170v27q79 7 94 20t15 73v627q0 59 -15 72t-94 20v27h170v-866z" /></g><g transform="matrix(.017,-0,0,-.017,97.493,16.05)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> and <svg style="vertical-align:-2.3205pt;width:201.77499px;" id="M2" height="19" version="1.1" viewBox="0 0 201.77499 19" width="201.77499" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.05)"><path id="x1D43E" d="M764 650l-7 -26q-61 -10 -91.5 -22.5t-76.5 -48.5l-235 -184q104 -152 208 -276q31 -37 54.5 -48.5t68.5 -16.5l-7 -28h-156q-138 170 -213 284q-19 29 -33.5 35t-33.5 -7l-29 -173q-15 -75 -5.5 -90.5t74.5 -20.5l-5 -28h-260l7 28q58 5 74 21.5t30 89.5l70 378
q12 68 2 83t-72 22l6 28h257l-7 -28q-62 -7 -76 -21.5t-27 -83.5l-32 -172q29 11 78 46q112 84 217 179q18 16 23.5 25.5t-1 14.5t-26.5 8l-30 4l5 28h249z" /></g><g transform="matrix(.017,-0,0,-.017,13.254,16.05)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,19.135,16.05)"><path id="x1D461" d="M324 430l-26 -36l-112 -4l-55 -265q-13 -66 7 -66q13 0 44.5 20t50.5 40l17 -24q-38 -40 -85.5 -73.5t-87.5 -33.5q-50 0 -21 138l55 262h-80l-2 8l25 34h66l25 99l78 63l10 -9l-37 -153h128z" /></g><g transform="matrix(.017,-0,0,-.017,24.932,16.05)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,31.629,16.05)"><path id="x1D465" d="M536 404q0 -17 -13.5 -31.5t-26.5 -14.5q-8 0 -15 10q-11 14 -25 14q-22 0 -67 -50q-47 -52 -68 -82l37 -102q31 -88 55 -88t78 59l16 -23q-32 -48 -68.5 -78t-65.5 -30q-19 0 -37.5 20t-29.5 53l-41 116q-72 -106 -114.5 -147.5t-79.5 -41.5q-21 0 -34.5 14t-13.5 37
q0 16 13.5 31.5t28.5 15.5q12 0 17 -11q5 -10 25 -10q22 0 57.5 36t89.5 111l-40 108q-22 58 -36 58q-21 0 -67 -57l-19 20q81 107 125 107q17 0 30 -22t39 -88l22 -55q68 92 108.5 128.5t74.5 36.5q20 0 32.5 -14t12.5 -30z" /></g><g transform="matrix(.017,-0,0,-.017,41.131,16.05)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,51.739,16.05)"><use xlink:href="#x2208"/></g><g transform="matrix(.017,-0,0,-.017,65.44,16.05)"><use xlink:href="#x1D436"/></g> <g transform="matrix(.012,-0,0,-.012,77.425,7.887)"><use xlink:href="#x2113"/></g> <g transform="matrix(.017,-0,0,-.017,82.938,16.05)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,88.819,16.05)"><use xlink:href="#x5B"/></g><g transform="matrix(.017,-0,0,-.017,94.684,16.05)"><use xlink:href="#x2212"/></g><g transform="matrix(.017,-0,0,-.017,104.662,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,112.821,16.05)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,119.519,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,127.678,16.05)"><use xlink:href="#x5D"/></g><g transform="matrix(.017,-0,0,-.017,137.334,16.05)"><path id="xD7" d="M528 54l-36 -38l-198 201l-198 -201l-36 38l197 200l-197 201l36 38l198 -202l198 202l36 -38l-197 -201z" /></g><g transform="matrix(.017,-0,0,-.017,151.085,16.05)"><use xlink:href="#x5B"/></g><g transform="matrix(.017,-0,0,-.017,156.95,16.05)"><use xlink:href="#x2212"/></g><g transform="matrix(.017,-0,0,-.017,166.928,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,175.088,16.05)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,181.785,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,189.945,16.05)"><use xlink:href="#x5D"/></g><g transform="matrix(.017,-0,0,-.017,195.809,16.05)"><use xlink:href="#x29"/></g> </svg>, <svg style="vertical-align:-0.546pt;width:34.6875px;" id="M3" height="11.9875" version="1.1" viewBox="0 0 34.6875 11.9875" width="34.6875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.25)"><use xlink:href="#x2113"/></g><g transform="matrix(.017,-0,0,-.017,11.758,11.25)"><path id="x2265" d="M531 285l-474 -214v56l416 183l-416 184v56l474 -215v-50zM531 -40h-474v50h474v-50z" /></g><g transform="matrix(.017,-0,0,-.017,26.462,11.25)"><use xlink:href="#x31"/></g> </svg>, are derived in an appropriate <svg style="vertical-align:-3.276pt;width:60.900002px;" id="M4" height="16.15" version="1.1" viewBox="0 0 60.900002 16.15" width="60.900002" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.012)"><path id="x1D43F" d="M559 163q-23 -66 -68 -163h-474l6 26q62 4 79.5 19.5t28.5 75.5l78 409q7 35 8.5 49t-8 25t-24 13t-51.5 5l5 28h266l-6 -28q-65 -5 -79.5 -18t-25.5 -74l-76 -406q-10 -57 14 -75q12 -13 96 -13q93 0 126 29q41 40 76 109z" /></g> <g transform="matrix(.012,-0,0,-.012,9.763,16.087)"><path id="x32" d="M412 140l28 -9q0 -2 -35 -131h-373v23q112 112 161 170q59 70 92 127t33 115q0 63 -31 98t-86 35q-75 0 -137 -93l-22 20l57 81q55 59 135 59q69 0 118.5 -46.5t49.5 -122.5q0 -62 -29.5 -114t-102.5 -130l-141 -149h186q42 0 58.5 10.5t38.5 56.5z" /></g> <g transform="matrix(.017,-0,0,-.017,16.1,12.012)"><use xlink:href="#x5B"/></g><g transform="matrix(.017,-0,0,-.017,21.965,12.012)"><use xlink:href="#x2212"/></g><g transform="matrix(.017,-0,0,-.017,31.943,12.012)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,40.102,12.012)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,46.8,12.012)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,54.959,12.012)"><use xlink:href="#x5D"/></g> </svg> norm to the true solution of the weight function. Numerical examples are also presented to validate the theoretical findings.
Read full abstract