Abstract

We develop the expansion method of singular integral equation (SIE) for hypersingular integral equation (HSIE). Relating the hypersingular integrals to Cauchy principal-value integrals, we interpolate the kernel and the density functions to the truncated Chebyshev series of the second kind. The corresponding convergence results for the functions <svg style="vertical-align:-3.56265pt;width:103.45px;" id="M1" height="20.549999" version="1.1" viewBox="0 0 103.45 20.549999" width="103.45" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.05)"><path id="x1D453" d="M619 670q0 -13 -9 -26t-18 -19q-13 -10 -25 2q-36 38 -66 38q-31 0 -54.5 -50t-45.5 -185h120l-20 -31l-107 -12q-23 -138 -57 -293q-27 -122 -55 -184.5t-75 -109.5q-60 -61 -114 -61q-25 0 -47.5 15t-22.5 31q0 17 31 44q11 8 20 -1q10 -11 31 -19t35 -8q26 0 47 19&#xA;q34 34 71 253l54 315h-90l-3 12l31 30h70q28 138 90 204q35 37 75 57.5t70 20.5q26 0 45 -14t19 -28z" /></g><g transform="matrix(.017,-0,0,-.017,15.684,16.05)"><path id="x2208" d="M448 1h-83q-118 0 -201.5 74.5t-83.5 179.5t83.5 179.5t201.5 74.5h83v-50h-84q-87 0 -150.5 -51.5t-73.5 -127.5h308v-50h-308q10 -76 73.5 -127.5t150.5 -51.5h84v-50z" /></g><g transform="matrix(.017,-0,0,-.017,29.385,16.05)"><path id="x1D436" d="M682 629q-1 -16 -1.5 -72t-2.5 -86l-31 -4q-5 92 -51 129t-139 37q-100 0 -177 -49t-116 -125t-39 -162q0 -122 66 -201t182 -79q83 0 137 42.5t112 128.5l26 -15q-12 -31 -42.5 -88t-45.5 -75q-139 -27 -199 -27q-148 0 -243 81.5t-95 226.5q0 173 129.5 274.5&#xA;t325.5 101.5q114 0 204 -38z" /></g> <g transform="matrix(.012,-0,0,-.012,41.375,7.888)"><path id="x2113" d="M363 114l21 -20q-62 -106 -161 -106q-61 0 -94 40t-33 138v56l-54 -40l-14 27l68 57v89q0 112 15.5 166t49.5 91q43 46 96 46q44 0 71 -32.5t27 -88.5q0 -41 -17.5 -81.5t-49.5 -76t-55.5 -57t-55.5 -46.5v-87q0 -138 81 -138q60 0 105 63zM177 421v-101q117 105 117 217&#xA;q0 38 -15 60.5t-41 22.5q-34 0 -47.5 -46.5t-13.5 -152.5z" /></g> <g transform="matrix(.017,-0,0,-.017,46.887,16.05)"><path id="x28" d="M300 -147l-18 -23q-106 71 -159 185.5t-53 254.5v1q0 139 53 252.5t159 186.5l18 -24q-74 -62 -115.5 -173.5t-41.5 -242.5q0 -130 41.5 -242.5t115.5 -174.5z" /></g><g transform="matrix(.017,-0,0,-.017,52.769,16.05)"><path id="x5B" d="M290 -163h-170v866h170v-28q-79 -7 -94 -19.5t-15 -72.5v-627q0 -59 14.5 -71.5t94.5 -19.5v-28z" /></g><g transform="matrix(.017,-0,0,-.017,58.634,16.05)"><path id="x2212" d="M535 230h-483v50h483v-50z" /></g><g transform="matrix(.017,-0,0,-.017,68.612,16.05)"><path id="x31" d="M384 0h-275v27q67 5 81.5 18.5t14.5 68.5v385q0 38 -7.5 47.5t-40.5 10.5l-48 2v24q85 15 178 52v-521q0 -55 14.5 -68.5t82.5 -18.5v-27z" /></g><g transform="matrix(.017,-0,0,-.017,76.771,16.05)"><path id="x2C" d="M95 130q31 0 61 -30t30 -78q0 -53 -38 -87.5t-93 -51.5l-11 29q77 31 77 85q0 26 -17.5 43t-44.5 24q-4 0 -8.5 6.5t-4.5 17.5q0 18 15 30t34 12z" /></g><g transform="matrix(.017,-0,0,-.017,83.469,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,91.628,16.05)"><path id="x5D" d="M226 -163h-170v27q79 7 94 20t15 73v627q0 59 -15 72t-94 20v27h170v-866z" /></g><g transform="matrix(.017,-0,0,-.017,97.493,16.05)"><path id="x29" d="M275 270q0 -296 -211 -440l-19 23q75 62 116.5 174t41.5 243t-42 243t-116 173l19 24q211 -144 211 -440z" /></g> </svg> and <svg style="vertical-align:-2.3205pt;width:201.77499px;" id="M2" height="19" version="1.1" viewBox="0 0 201.77499 19" width="201.77499" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,16.05)"><path id="x1D43E" d="M764 650l-7 -26q-61 -10 -91.5 -22.5t-76.5 -48.5l-235 -184q104 -152 208 -276q31 -37 54.5 -48.5t68.5 -16.5l-7 -28h-156q-138 170 -213 284q-19 29 -33.5 35t-33.5 -7l-29 -173q-15 -75 -5.5 -90.5t74.5 -20.5l-5 -28h-260l7 28q58 5 74 21.5t30 89.5l70 378&#xA;q12 68 2 83t-72 22l6 28h257l-7 -28q-62 -7 -76 -21.5t-27 -83.5l-32 -172q29 11 78 46q112 84 217 179q18 16 23.5 25.5t-1 14.5t-26.5 8l-30 4l5 28h249z" /></g><g transform="matrix(.017,-0,0,-.017,13.254,16.05)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,19.135,16.05)"><path id="x1D461" d="M324 430l-26 -36l-112 -4l-55 -265q-13 -66 7 -66q13 0 44.5 20t50.5 40l17 -24q-38 -40 -85.5 -73.5t-87.5 -33.5q-50 0 -21 138l55 262h-80l-2 8l25 34h66l25 99l78 63l10 -9l-37 -153h128z" /></g><g transform="matrix(.017,-0,0,-.017,24.932,16.05)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,31.629,16.05)"><path id="x1D465" d="M536 404q0 -17 -13.5 -31.5t-26.5 -14.5q-8 0 -15 10q-11 14 -25 14q-22 0 -67 -50q-47 -52 -68 -82l37 -102q31 -88 55 -88t78 59l16 -23q-32 -48 -68.5 -78t-65.5 -30q-19 0 -37.5 20t-29.5 53l-41 116q-72 -106 -114.5 -147.5t-79.5 -41.5q-21 0 -34.5 14t-13.5 37&#xA;q0 16 13.5 31.5t28.5 15.5q12 0 17 -11q5 -10 25 -10q22 0 57.5 36t89.5 111l-40 108q-22 58 -36 58q-21 0 -67 -57l-19 20q81 107 125 107q17 0 30 -22t39 -88l22 -55q68 92 108.5 128.5t74.5 36.5q20 0 32.5 -14t12.5 -30z" /></g><g transform="matrix(.017,-0,0,-.017,41.131,16.05)"><use xlink:href="#x29"/></g><g transform="matrix(.017,-0,0,-.017,51.739,16.05)"><use xlink:href="#x2208"/></g><g transform="matrix(.017,-0,0,-.017,65.44,16.05)"><use xlink:href="#x1D436"/></g> <g transform="matrix(.012,-0,0,-.012,77.425,7.887)"><use xlink:href="#x2113"/></g> <g transform="matrix(.017,-0,0,-.017,82.938,16.05)"><use xlink:href="#x28"/></g><g transform="matrix(.017,-0,0,-.017,88.819,16.05)"><use xlink:href="#x5B"/></g><g transform="matrix(.017,-0,0,-.017,94.684,16.05)"><use xlink:href="#x2212"/></g><g transform="matrix(.017,-0,0,-.017,104.662,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,112.821,16.05)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,119.519,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,127.678,16.05)"><use xlink:href="#x5D"/></g><g transform="matrix(.017,-0,0,-.017,137.334,16.05)"><path id="xD7" d="M528 54l-36 -38l-198 201l-198 -201l-36 38l197 200l-197 201l36 38l198 -202l198 202l36 -38l-197 -201z" /></g><g transform="matrix(.017,-0,0,-.017,151.085,16.05)"><use xlink:href="#x5B"/></g><g transform="matrix(.017,-0,0,-.017,156.95,16.05)"><use xlink:href="#x2212"/></g><g transform="matrix(.017,-0,0,-.017,166.928,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,175.088,16.05)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,181.785,16.05)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,189.945,16.05)"><use xlink:href="#x5D"/></g><g transform="matrix(.017,-0,0,-.017,195.809,16.05)"><use xlink:href="#x29"/></g> </svg>, <svg style="vertical-align:-0.546pt;width:34.6875px;" id="M3" height="11.9875" version="1.1" viewBox="0 0 34.6875 11.9875" width="34.6875" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,11.25)"><use xlink:href="#x2113"/></g><g transform="matrix(.017,-0,0,-.017,11.758,11.25)"><path id="x2265" d="M531 285l-474 -214v56l416 183l-416 184v56l474 -215v-50zM531 -40h-474v50h474v-50z" /></g><g transform="matrix(.017,-0,0,-.017,26.462,11.25)"><use xlink:href="#x31"/></g> </svg>, are derived in an appropriate <svg style="vertical-align:-3.276pt;width:60.900002px;" id="M4" height="16.15" version="1.1" viewBox="0 0 60.900002 16.15" width="60.900002" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://www.w3.org/2000/svg"> <g transform="matrix(.017,-0,0,-.017,.062,12.012)"><path id="x1D43F" d="M559 163q-23 -66 -68 -163h-474l6 26q62 4 79.5 19.5t28.5 75.5l78 409q7 35 8.5 49t-8 25t-24 13t-51.5 5l5 28h266l-6 -28q-65 -5 -79.5 -18t-25.5 -74l-76 -406q-10 -57 14 -75q12 -13 96 -13q93 0 126 29q41 40 76 109z" /></g> <g transform="matrix(.012,-0,0,-.012,9.763,16.087)"><path id="x32" d="M412 140l28 -9q0 -2 -35 -131h-373v23q112 112 161 170q59 70 92 127t33 115q0 63 -31 98t-86 35q-75 0 -137 -93l-22 20l57 81q55 59 135 59q69 0 118.5 -46.5t49.5 -122.5q0 -62 -29.5 -114t-102.5 -130l-141 -149h186q42 0 58.5 10.5t38.5 56.5z" /></g> <g transform="matrix(.017,-0,0,-.017,16.1,12.012)"><use xlink:href="#x5B"/></g><g transform="matrix(.017,-0,0,-.017,21.965,12.012)"><use xlink:href="#x2212"/></g><g transform="matrix(.017,-0,0,-.017,31.943,12.012)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,40.102,12.012)"><use xlink:href="#x2C"/></g><g transform="matrix(.017,-0,0,-.017,46.8,12.012)"><use xlink:href="#x31"/></g><g transform="matrix(.017,-0,0,-.017,54.959,12.012)"><use xlink:href="#x5D"/></g> </svg> norm to the true solution of the weight function. Numerical examples are also presented to validate the theoretical findings.

Highlights

  • The integral equation is defined as an equation with an unknown function that appears under the integral sign

  • We develop the expansion method of singular integral equation (SIE) for hypersingular integral equation (HSIE)

  • A wealth of the literature on applications related to the numerical evaluation of hypersingular integral equations HSIEs could be found in [5,6,7,8,9,10]

Read more

Summary

Introduction

The integral equation is defined as an equation with an unknown function that appears under the integral sign. These equations could be classified by the order of singularity [1]. A wealth of the literature on applications related to the numerical evaluation of hypersingular integral equations HSIEs could be found in [5,6,7,8,9,10]. This paper focuses on onedimensional singular integral equations (SIEs) found in various mixed boundary value problems of mathematical physics and engineering such as isotropic elastic bodies involving cracks, aerodynamics, hydrodynamics, elasticity, and other related areas.

Description of the General Method
Convergence Rates
Numerical Example
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call