The rise of antimicrobial resistance poses a critical public health threat worldwide. While antimicrobial photodynamic therapy (aPDT) has demonstrated efficacy against multidrug-resistant (MDR) bacteria, its effectiveness can be limited by several factors, including the delivery of the photosensitizer (PS) to the site of interest and the development of bacterial resistance to PS uptake. There is a need for alternative methods, one of which is superhydrophobic antimicrobial photodynamic therapy (SH-aPDT), which we report here. SH-aPDT is a technique that isolates the PS on a superhydrophobic (SH) membrane, generating airborne singlet oxygen (1O2) that can diffuse up to 1 mm away from the membrane. In this study, we developed a SH polydimethylsiloxane dressing coated with PS verteporfin. These dressings contain air channels called a plastron for supplying oxygen for aPDT and are designed so that there is no direct contact of the PS with the tissue. Our investigation focuses on the efficacy of SH-aPDT on biofilms formed by drug-sensitive and MDR strains of Gram-positive (Staphylococcus aureus and S. aureus methicillin-resistant) and Gram-negative bacteria (Pseudomonas aeruginosa and P. aeruginosa carbapenem-resistant). SH-aPDT reduces bacterial biofilms by approximately 3 log with a concomitant decrease in their metabolism as measured by MTT. Additionally, the treatment disrupted extracellular polymeric substances, leading to a decrease in biomass and biofilm thickness. This innovative SH-aPDT approach holds great potential for combating antimicrobial resistance, offering an effective strategy to address the challenges posed by drug-resistant wound infections.
Read full abstract